Neural circuit of tail-elicited siphon withdrawal in Aplysia. I. Differential lateralization of sensitization and dishabituation.
نویسندگان
چکیده
The tail-elicited siphon withdrawal reflex (TSW) has been a useful preparation in which to study learning and memory in Aplysia. However, comparatively little is known about the neural circuitry that translates tail sensory input (via the P9 nerves to the pleural ganglion) to final reflex output by siphon motor neurons (MNs) in the abdominal ganglion. To address this question, we examined the functional architecture of the TSW circuit by selectively severing nerves of semi-intact preparations and recording either tail-evoked responses in the siphon MNs or measuring siphon withdrawal responses directly. We found that the neural circuit underlying TSW is functionally lateralized. We next tested whether the expression of learning in the TSW reflects the underlying circuit architecture and shows side-specificity. We tested behavioral and physiological correlates of three forms of learning: sensitization, habituation, and dishabituation. Consistent with the circuit architecture, we found that sensitization and habituation of TSW are expressed in a side-specific manner. Unexpectedly, we found that dishabituation was expressed bilaterally, suggesting that a modulatory pathway bridges the two (ipsilateral) input pathways of the circuit, but this path is only revealed for a specific form of learning, dishabituation. These results suggest that the effects of a descending modulatory signal are differentially "gated" during sensitization and dishabituation.
منابع مشابه
Neural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation.
In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contra...
متن کاملRunning Head: MECHANISMS OF REFLEX PLASTICITY IN APLYSIA Neural circuit of tail-elicited siphon withdrawal in Aplysia: II. Role of gated inhibition in differential lateralization of sensitization and dishabituation
In the previous report (Bristol et al. 2003), we observed that tail shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally, but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for t...
متن کاملDevelopment Aplysia Escape Locomotion System
The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined...
متن کاملIdentified serotonergic neurons LCB1 and RCB1 in the cerebral ganglia of Aplysia produce presynaptic facilitation of siphon sensory neurons.
Several lines of evidence suggest that 5-HT plays a significant role in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) found that treatment with the 5-HT neurotoxin, 5,7-DHT markedly reduced both synaptic facilitation and behavioral dishabituation. T...
متن کاملDepletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock.
Noxious stimuli, such as electrical shocks to the animal's tail, enhance Aplysia's gill- and siphon-withdrawal reflex. Previous experimental work has indicated that this behavioral enhancement, known as dishabituation (if the reflex has been habituated) or sensitization (if it has not been habituated), might be mediated, at least in part, by the endogenous monoaminergic transmitter serotonin (5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2004